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The prevailing discourse on the future of agriculture is dominated by an imbalanced narrative that calls for food production to increase 
dramatically—potentially doubling by 2050—without specifying commensurate environmental goals. We aim to rebalance this narrative by 
laying out quantitative and compelling midcentury targets for both production and the environment. Our analysis shows that an increase of 
approximately 25%–70% above current production levels may be sufficient to meet 2050 crop demand. At the same time, nutrient losses and 
greenhouse gas emissions from agriculture must drop dramatically to restore and maintain ecosystem functioning. Specifying quantitative targets 
will clarify the scope of the challenges that agriculture must face in the coming decades, focus research and policy on achieving specific outcomes, 
and ensure that sustainable intensification efforts lead to measurable environmental improvements. We propose new directions for research and 
policy to help meet both sustainability and production goals.
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The prevailing discourse on the future of agriculture   
 is rife with the assertion that food production must 

increase dramatically—potentially doubling by 2050—to 
meet surging demand. Many authors also call for agricul-
ture to become more environmentally sustainable, but with 
little urgency and few quantitative targets. The result is an 
imbalanced narrative that heavily privileges production 
over conservation. This imbalance persists despite calls 
in the growing sustainable intensification (SI) literature 
to treat food production and environmental protection as 
equal parts of agriculture’s grand challenge (Robertson and 
Swinton 2005, Garnett et al. 2013, Pretty and Bharucha 2014, 
Rockström et al. 2017).

We aim to rebalance this narrative by laying out quan-
titative and compelling SI targets for both production and 
the environment. These goals will clarify the scope of the 
challenges that agriculture must face in the coming decades, 
focus research and policy on achieving specific outcomes, 
and ensure that SI efforts lead to measurable environmental 
improvements.

Our targets are based on the following standards: (a) SI 
production goals should aim to meet projected global food 
demand while recognizing that factors beyond aggregate 
production also affect hunger and malnutrition (FAO et al. 
2015, Schipanski et al. 2016), and (b) SI environmental goals 
should aim to restore and maintain ecosystem functioning 
in both managed and natural systems (Neufeldt et al. 2013, 
Rockström et al. 2017).

Many authors call for production increases of 60%–100% 
by 2050, based on two recent food-demand projections 
(Tilman et  al. 2011, Alexandratos and Bruinsma 2012). 
These goals appear clear and compelling, but they exag-
gerate the scale of the production increase needed by 2050 
because they misinterpret the underlying projections and 
ignore recent production gains. Moreover, the projections 
are often simplified into a goal of doubling yields, which 
serves as an urgent rallying cry for research, policy, and 
industry (Monsanto 2008, Foley et  al. 2011, Tilman et  al. 
2011, Ray et al. 2013, Long et al. 2015, Buckley 2016). This, 
in turn, fosters a produce-at-all-costs mentality, which may 
exacerbate existing environmental challenges by increasing 
the use of fertilizers, pesticides, irrigation, and tillage.

In contrast, current SI environmental targets are unclear 
and unlikely to inspire action. Most authors agree that 
uncultivated land should not be converted for crop produc-
tion (e.g., Garnett et  al. 2013, Pretty and Bharucha 2014). 
Beyond this, however, stated goals diverge. They range 
from the basic—not “increasing agriculture’s environmental 
footprint” (Buckley 2016)—to the more aggressive—“major 
reductions in environmental impact” (Garnett et al. 2013). 
Some sustainability goals would even result in increased 
environmental degradation, such as when marginal reduc-
tions in per-unit impacts are coupled with doubled output 
(Monsanto 2008).

Our analysis shows that, largely because of recent produc-
tion gains, an increase of approximately 25%–70% above 
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Figure 1. Food demand is projected to climb, while environmental impacts must 
plummet. Calls to double crop production from a recent baseline imply growth 
rates outside of the range of empirical projections. Meanwhile, agriculture’s 
environmental impacts need to fall rapidly to protect critical ecosystem 
functions. (a) Historical and projected global cereal production and demand 
(in petagrams). (b) Historical and projected direct greenhouse gas (GHG) 
emissions from agriculture and 2050 goal. (c) Historical total phosphorus loading 
in the Mississippi–Atchafalaya River Basin and 2035 goal (in gigagrams). 
Historical data are shown in solid lines, and future projections and goal 
trajectories are shown in dashed or dotted lines (see supplemental tables S1 and 
S3). Pg, petagram; Gg, gigagram. Sources: MRGMWNTF 2015, Foley et al. 2011, 
Tilman et al. 2011, Alexandratos and Bruinsma 2012, USGS 2015, FAO 2016.

current production levels may be suf-
ficient to meet 2050 demand (figure 1a, 
supplemental table S1). Calls to double 
food production from today’s levels are 
not supported by existing projections. 
Although even a 25%–70% increase will 
be challenging, global agricultural out-
put is at least on the right trajectory. 
In contrast, agriculture’s environmental 
performance is going in the wrong direc-
tion: Aggregate impacts are increasing 
and must drop sharply over the com-
ing decades (figure 1b–c, supplemental 
table S3).

We review and update the main pro-
jections of world food demand, discuss 
examples of environmental improve-
ments needed by 2050, and propose 
new directions for research and policy 
to help meet both sustainability and 
production goals. Our objectives are 
to clarify the overarching productivity 
and environmental goals of SI and to 
recalibrate the narrative on the future 
of agriculture. Therefore, we do not 
address the related social, economic, 
and geopolitical dimensions of SI (Loos 
et  al. 2014, Pretty and Bharucha 2014, 
IPES-Food 2016); heterogeneity among 
regions (Alexandratos and Bruinsma 
2012, Mueller et  al. 2012, Cunningham 
et al. 2013, van Ittersum et al. 2013); or 
the merits of different management phi-
losophies (Cassman 1999, IAASTD 2009, 
Bommarco et  al. 2013, Tittonell 2014). 
Rectifying the prevailing SI narrative is 
crucial because it is already shaping the 
future of agricultural research and policy 
(e.g., USDA 2015, Buckley 2016), with 
potentially dramatic consequences for 
the future of food production and the 
environment.

Food-demand projections
Food demand in 2050 is projected to rise 
as the global population crests 9.7 billion 
people (UN 2015) and greater wealth 
drives up per-capita consumption, espe-
cially of resource-intensive animal prod-
ucts (Alexandratos and Bruinsma 2012). 
Public and scientific discourse on the 
subject focuses primarily on two stud-
ies (Tilman et  al. 2011, Alexandratos 
and Bruinsma 2012). First, Alexandratos 
and Bruinsma (2012) of the United 
Nations (UN) Food and Agriculture 
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Organization (FAO) projected a 60% increase in demand 
from a 2005/2007 baseline using a price-weighted index of 
food commodities. Second, Tilman and colleagues (2011) 
projected that demand for calories and protein from human-
edible crops will increase by 100% and 110%, respectively, 
from a 2005 baseline. Both of these projections account for 
crops used as animal feed and, to a limited extent, as biofuel 
feedstock.

These projections are complex and are commonly mis-
interpreted. First, the FAO projection of a 60% increase is 
frequently misquoted as a 70% increase when authors cite an 
earlier FAO report (Alexandratos 2006). Second, the price-
weighted basis of the FAO figures implies a larger increase 
in crop demand than is actually projected on a mass basis: 
For example, FAO projects only a 46% increase in cereals 
demand (Alexandratos and Bruinsma 2012). Most impor-
tantly, authors often ignore the base year of the projections 
(Foley et al. 2011, Ray et al. 2013, Long et al. 2015, Daryanto 
et al. 2016), implying that the projected increase must occur 
from today’s production levels. For both of these projec-
tions, the base year is now a decade past, and production has 
increased substantially in this time (table S1). This error is 
particularly misleading when authors explicitly graph 2050 
demand as a doubling from current levels (e.g., Long et al. 
2015).

We use global demand for cereals as a proxy for total 
crop demand to illustrate the production increase needed 
by 2050. Cereals are the world’s dominant crops. In 2013, 
they were grown on 47% of global cropland and provided 
63% and 56% of calories and protein, respectively, from 
human-edible crops (table S3; FAO 2016). Of course, ending 
hunger and malnutrition will require multiple crop types, 
including pulses, roots, vegetables, and fruits, many of which 
will need to be produced and marketed locally. Our focus on 
aggregate global cereal demand does not imply that meeting 
this demand would ensure global food security. Instead, our 
updated projections are intended to illustrate agriculture’s 
big-picture production challenge.

We build and update approximations of the FAO 
(Alexandratos and Bruinsma 2012) and Tilman and col-
leagues’ (2011) projections. The FAO projected cereals 
demand in 2050 directly (Alexandratos and Bruinsma 2012). 
Tilman and colleagues (2011) did not, so we approximate 
their projection with a simple doubling of demand from a 
2005 baseline. We also linearly transform both estimates 
to account for differences between the original projections’ 
assumed 2050 population and the latest United Nations 
analysis (UN 2015). We use the most recent FAOSTAT data 
(FAO 2016), from 2014, as the baseline for our projections. 
All data and projections are available in the supplemental 
materials.

Our updates to the FAO (Alexandratos and Bruinsma 
2012) and Tilman and colleagues’ (2011) projections indi-
cate that production of cereals must only increase 26% and 
68% from 2014 levels, respectively, to meet 2050 demand 
(figure 1a, table S1). Rapid production growth in recent years 

has made substantial progress toward the original projected 
increases of 46% and 100%. Cereal production increased 
24% from 2005 to 2014 because of both yield improvements 
and the expansion of cropped area (supplemental tables 
S1 and S5; FAO 2016). The production of oilcrops—which 
account for most of the remaining calories and protein from 
human-edible crops—increased even more, by 39% (supple-
mental tables S2 and S4; FAO 2016). Projected 2050 demand 
for oilcrops is 46% higher than 2014 production levels based 
on the FAO projection and 50% higher based on a doubling 
from 2005 (table S2).

The discrepancy between the two cereal demand 
 projections—26% versus 68%—is largely due to differ-
ences in model assumptions. The FAO (Alexandratos and 
Bruinsma 2012) assumed a lower rate of annual GDP growth 
than Tilman and colleagues (2011): 2.1% as compared with 
2.5%. The FAO also adjusted its projection to account for 
potential saturation of meat consumption in the largest 
developing country, China, and cultural factors limiting the 
growth of meat consumption in the second largest, India 
(Alexandratos and Bruinsma 2012).

The two projections have drastically different implica-
tions for the future of crop production. Under the FAO 
projection, the rate of average annual cereal yield growth 
could fall gradually over the next 35 years and still meet 
demand using only existing cropland. To double from a 
2005 baseline, in contrast, cereal yields would have to grow 
continually at a compound annual rate of over 1.5%, which 
has not been achieved consistently since the mid-1980s 
 (figure 2). Doubling yields by 2050 from a recent baseline—
the increase implied when authors do not specify the base 
year for doubling—would require an even higher annual 
yield growth rate of 1.9% per year.

Figure 2. Decrease in world cereal yield growth rate 
over time. To double by 2050 from a 2005 baseline, yield 
growth would have to be maintained at 1.5% per year. 
Doubling from a 2014 baseline would require yield growth 
of 1.9% per year. Each point represents the compound 
annual growth rate of global average cereal yields over 
the 5 previous years (FAO 2016). To smooth interannual 
variation, growth rates were calculated using 5-year 
moving average cereal yields.
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Sustaining these rates of average annual yield growth 
until 2050, if it is even possible, would require widespread 
intensification of fertilizer, pesticide, and irrigation regimes. 
This level of intensification would almost certainly increase 
agriculture’s impact on water quality, aquifers, wildlife, and 
the climate (Robertson and Swinton 2005, Foley et al. 2011, 
West et  al. 2014). SI production goals should therefore be 
stated carefully to avoid furthering a production-at-all-costs 
approach to agriculture. Goals should reflect the updated 
projection that production must increase approximately 
25%–70% from recent levels to meet demand in 2050. Calls 
for doubling current production by 2050 should be avoided.

Environmental goals
In contrast to the literature on food demand, there has been 
little discussion of specific environmental goals for agricul-
ture in 2050 or of the sector’s trajectory toward such goals. 
Instead, the prevailing discourse often focuses on increasing 
efficiency or improving general “sustainability,” which gives 
the impression that marginal environmental improvements 
are sufficient (Petersen and Snapp 2015). To illustrate the 
true scope of agriculture’s environmental challenges, we 
analyze the sector’s performance against quantitative targets 
that have been proposed to achieve specific environmental 
outcomes: mitigating climate change and limiting eutrophi-
cation in the Gulf of Mexico.

Agricultural production activities directly contribute 
11%–13% of the world’s total anthropogenic greenhouse 
gas (GHG) emissions (IPCC 2014). Indirect emissions 
from land-use change in agriculture and forestry contribute 
another 12% (IPCC 2014). To avoid the worst impacts of 
climate change, Foley and colleagues (2011) called for an 
80% reduction in agricultural GHG emissions. Since direct 
agricultural GHG emissions have been steadily climbing, 
achieving this level of reduction by 2050 would require an 
abrupt shift in emissions trajectory (figure 1b, table S3).

Losses of agricultural nutrients to waterways contribute 
to hypoxic “dead zones” downstream, threatening marine 
life and fisheries in coastal regions throughout the world. 
The hypoxic zone in the northern Gulf of Mexico is fed 
by the Mississippi–Atchafalaya River Basin system in the 
central United States, where riverine nitrogen (N) and 
phosphorus (P) are primarily from agricultural sources. The 
second largest in the world, this dead zone reached 22,000 
square kilometers (km2) in 2002 and averages 13,650 km2 
per year (EPA 2016). In 2001, an intergovernmental task 
force set a goal to reduce the average size of the dead zone 
to 5000 km2 by 2015, which would require reducing annual 
N and P loading to a level 45% below the 1980–1996 aver-
age (MRGMWNTF 2001, 2008). This goal was not met, 
and the task force recently extended the deadline to 2035 
(MRGMWNTF 2015). As figure 1c shows, P loading has 
been increasing, and meeting the 45% reduction goal would 
require a significant shift in trajectory (see also table S3). We 
illustrate this goal using P data because the trends for total 
N and reactive N are diverging and the Gulf Hypoxia Task 

Force goal applies only to total N. Because total N has been 
declining more rapidly than reactive N, using total N would 
indicate greater progress toward the goal than has actually 
been made.

These two examples show that agriculture still faces large 
environmental challenges, but they are not meant to imply 
that the sector has not made any progress. Indeed, US agri-
culture has improved in important areas, including by cut-
ting sheet, rill, and wind erosion by 43% between 1982 and 
2007 (USDA 2011) and by beginning to reduce N losses in 
the Midwest (McIsaac et  al. 2016). However, both US and 
global data on concerns ranging from biodiversity loss and 
land conversion to irrigation-water withdrawals—in addi-
tion to GHG emissions and nutrient pollution—indicate that 
agriculture leaves a large and growing footprint (Foley et al. 
2011, West et  al. 2014, Haacker et  al. 2015). Clearly, envi-
ronmental sustainability cannot play second fiddle to inten-
sification; efforts to increase food production and reduce 
aggregate environmental impacts must go hand in hand.

Agriculture’s path to 2050
Meeting food demand while maintaining functioning eco-
systems will require a recalibrated SI strategy, in which 
up-to-date production goals are coupled with quantitative 
environmental targets. Research and policy should pivot to 
align with this strategy, both in the United States and glob-
ally. Here, we focus on the US context.

The research enterprise led by the National Science 
Foundation and the US Department of Agriculture (USDA) 
should prioritize efforts to identify and meet quantita-
tive production and environmental goals. First, research is 
needed to specify targets in both categories. There is a par-
ticularly urgent need to quantify the reductions in pollution 
and land degradation that must be achieved to sustain func-
tioning ecosystems at multiple scales (Neufeldt et al. 2013, 
Rockström et al. 2017). These goals will need to be refined 
periodically as new information becomes available, given the 
uncertainty of long-term projections.

Second, applied agricultural research should focus on 
developing production systems that can simultaneously 
meet both production and environmental targets while help-
ing farmers adapt to a range of emerging challenges, such as 
mounting water shortages (Falkenmark 2013, Elliott et  al. 
2014), pesticide resistance (Mortensen et al. 2012), yield pla-
teaus (Grassini et al. 2013, Ray et al. 2013), and the changing 
climate (Challinor et  al. 2014). The technical challenge of 
such a fundamental transformation in production systems is 
daunting, and meeting both sets of goals will require navi-
gating complex trade-offs (Robertson and Swinton 2005, 
Neufeldt et al. 2013, Davis et al. 2016). However, establishing 
clear targets will help researchers focus on these long-term 
challenges.

Achieving both production and environmental goals will 
require shifts in US agricultural policy. Current policy heav-
ily favors production, including through crop insurance and 
revenue- and price-based subsidy payments for commodity 
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crops. These programs carry only minimal environmental 
requirements, which provide limited protection against 
erosion and the loss of some wetlands and grasslands, but 
fail to target nutrient loss, air quality, GHG emissions, and 
other concerns. Conservation incentive programs help pro-
ducers implement many environmentally beneficial prac-
tices, but they are not structured to produce maximum 
benefits. Moreover, many environmental regulations cur-
rently exempt agricultural activities. To bring US policy 
in line with future needs, producers who receive subsidies 
should be required to meet more stringent environmental 
standards, conservation programs should be reformed to 
tie payments to quantified outcomes (Winsten and Hunter 
2011), and effective regulatory backstops should be insti-
tuted to control the most environmentally damaging prac-
tices. Quantitative targets can help guide these policy efforts 
and promote effective collaborations among researchers, 
farmers, government agencies, and civil-society groups. 
The Danish government’s pesticide strategy, which aims to 
reduce pesticide loads by 40%, is one promising example of 
using quantitative targets to collaboratively set agroenviron-
mental policy (DME 2013).

The goals of sustainable intensification extend beyond 
aggregate production and environmental performance. 
Additional policy efforts are needed to manage food demand 
by reducing food waste (West et al. 2014) and shifting diets 
(Davis et  al. 2016). We must also halt cropland expan-
sion (Cunningham et al. 2013) and ensure that the world’s 
poorest people have secure access to nutritious food (FAO 
et  al. 2015). Total land in agriculture has risen since 2005 
in Africa, South America, and Asia (supplemental table S6; 
FAO 2016), indicating continued land conversion at the 
expense of native ecosystems, and conversion continues in 
the United States as well (Lark et al. 2015). Approximately 
795 million people are hungry today, despite adequate global 
food production, because poverty, lack of infrastructure, 
poor governance, natural disasters, and political unrest 
restrict food access (FAO et al. 2015). These problems must 
be addressed even as production increases and pollution 
plummets.

Conclusions
We call on researchers, policymakers, and farmers to 
embrace this recalibrated vision of sustainable intensifica-
tion. Time is short: The annual cycle of planting and harvest 
gives farmers fewer than 35 chances to transform their pro-
duction systems by midcentury. Scientists also face a limited 
number of opportunities to develop and test new production 
and conservation strategies. As a group of young agricultural 
scientists (and one senior scientist), this is the challenge of 
our careers. By the time our generation retires, agriculture’s 
2050 goals must be met.
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